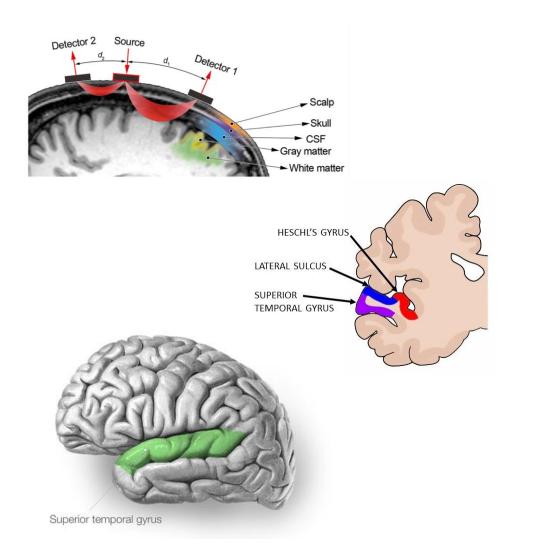


Untersuchungen des CI-basierten Hörens mittels funktioneller Nahinfrarotspektroskopie (fNIRS)

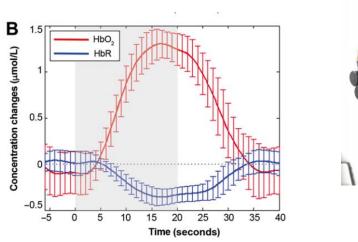
Kurt Steinmetzger | Tinnituszentrum, Charité – Universitätsmedizin Berlin 16. April 2024 | Charité – Forschungsgruppentreffen "Frühkindliche Sprachentwicklung"

Introduction


- Objective assessment of CI-based hearing using combined fNIRS and EEG measurements
- Especially important in *young children*: Can we find out how well these children can hear before we can ask them?
- Establishing *fNIRS as a diagnostic tool* in clinical practice

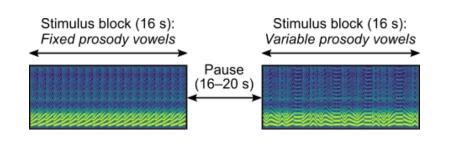
Cochlear implants

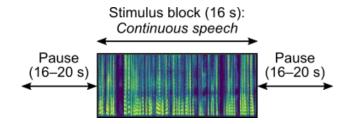
- Cls are surgically implanted devices that directly stimulate the auditory nerve via an inserted electrode array
- CIs are still the only successful sensory prosthesis used in humans and enable even deaf children to acquire language
- A fundamental limitation when listening through a CI is that the access to pitch information is severely limited


CHARITÉ

fNIRS

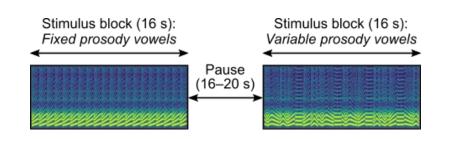
- Functional near-infrared spectroscopy (fNIRS) allows the measurement of activity in superficial cortical regions, such as STG
- Deeper sources such as Heschl's gyrus are out of reach
- Used *short channels* to limit the influence of systemic artefacts
- Easy to use and unaffected by the electrical signals of cochlear implants (CIs)

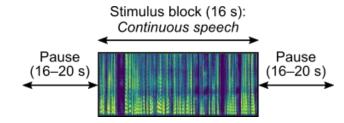



fNIRS

- Used 3D localiser to accurately determine the fNIRS sensor positions and corresponding cortical areas
- Focussed on *HbR data* as HbO data often unreliable when studying auditory activity (*Steinmetzger et al., 2020, HearRes,* <u>https://doi.org/10.1016/j.heares.2020.108069</u>)
- fNIRS and EEG data can be obtained simultaneously allowing cross validations
- EEG source localisations to *validate* the fNIRS results

CHARITÉ Tinnitus Center

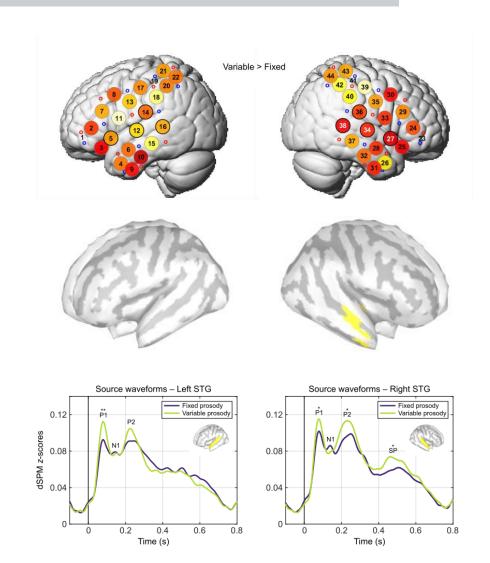

Stimuli and paradigm



- Continuous vowel sequences in which the prosodic contours were either the same throughout (*Fixed*) or varied between vowels (*Variable*)
- Block design without behavioural task
- Difference between fixed and variable conditions obvious with normal hearing, but at best subtle when listening through CIs
- Paediatric CI users additionally tested using continuous unprocessed speech

Research questions

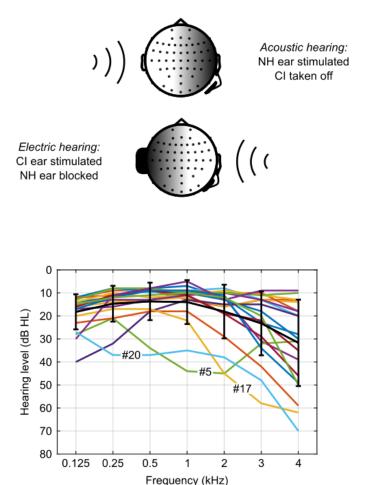
- →Is fNIRS suited to detect relatively subtle prosodic differences?
- →Which ERP components reflect prosody processing?


→How does speech-evoked cortical activity in pre-lingually deafened CI users change with more CI experience?

→Is fNIRS really the method of choice for studying CI-based hearing?

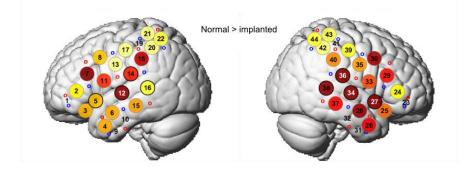
Results: I NH adults

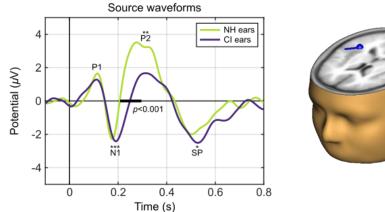
I NH adults


- Commenced by testing 20 young normalhearing (NH) listeners to obtain a "standard model" of cortical activity
- fNIRS results showed stronger activity along the right STG in the variable prosody condition
- ERP source localisations showed a similar pattern
- Difference driven by larger P2 and sustained potential in right STG

CHARITÉ

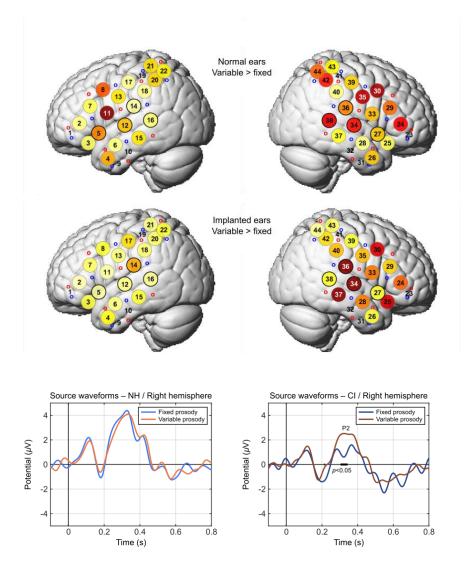
Results: II CI adults




- In a second step, we tested 20 unilateral adult CI users with preserved normal hearing in the other ear (single-sided deafness, SSD)
- Same stimuli and paradigm as before, but separate sessions for the normal and implanted ears
- Each subject served as *their own control*, enabling a direct comparison of acoustic and electric hearing
- Apart from a few exceptions, the audiograms of the normal ears only showed some agetypical hearing loss at high frequencies

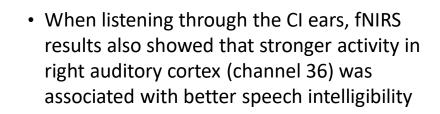
Subject	Age	Sex	CI ear	Duration of deafness (~y)	Duration of CI use (y.m)	Aetiology of deafness	Implant & processor type / strategy	Words correct CI ear (%)
1	58	m		23	5.5	Intracochlear schwannoma	FLEX28 & OPUS2 / FS4-p	60
2	61	f	r	6	5.6	Acoustic neuroma FLEX28 & OPUS2 / FS4		65
3	59	f		1	2.2	Sudden hearing loss HiRes90K & Naida Q90 / HiRes Optima-S		45
4	66	f	r	26	2.6	Sudden hearing loss FLEX28 & RONDO / FS4-p		65
5	66	f		22	5.6	Sudden hearing loss FLEX28 & OPUS2 / FS4		10
6	67	f		1	5.2	Sudden hearing loss CONCERTO medium & OPUS2 / FS4-p		45
7	66	m	r	1	6.1	Sudden hearing loss CI422 & CP810 / ACE		70
8	55	f	r	39	6.1	Mumps FLEX28 & OPUS2 / FS4		55
9	50	f		1	5.9	Sudden hearing loss FLEX28 & OPUS2 / FS4-p		45
10	44	f	r	2	4.4	Otosclerosis	CI522 & CP910 / ACE	55
11	67	f	r	1	6.7	Sudden hearing loss CI422 & CP810 / ACE		35
12	42	f	r	1	5.3	Sudden hearing loss HiRes90K & Naida Q90 / HiRes Optima-S		80
13	63	f		3	3.7	Sudden hearing loss FLEX28 & RONDO / FS4-p		55
14	77	f	r	13	2.10	Ménière's / Sudden hearing loss FLEX28 & SONNET / FS4		30
15	60	m	r	1	3.7	Sudden hearing loss FLEX28 & RONDO / FS4-p		35
16	78	f	r	1	5.0	Sudden hearing loss FLEX28 & SONNET / FS4		35
17	70	m	r	1	2.1	Sudden hearing loss HiRes Ultra & Naida Q90 / HiRes Optima-S		70
18	26	f	r	1	3.4	Meningitis / Temporal bone fracture FLEX28 & SONNET / FS4		80
19	66	m	r	30	1.4	Sudden hearing loss FLEX28 & RONDO2 / FS4-p		55
20	58	m		20	4.1	Unknown	HiRes90K & Naida Q70 / HiRes Optima-S	90
	Ø = 60 (12)	f = 14	r = 13	Ø = 10 (12)	Ø = 4.3 (1.7)	Sudden hearing loss = 14	MED-EL = 13	Ø = 54 (19.6)

13

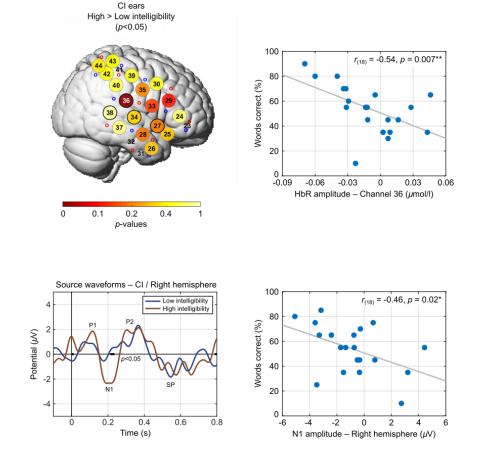


- fNIRS results showed stronger activity along the right STG and near left primary AC for the normal ears
- EEG data showed that P2 was much larger when listening via the normal ears
- Additionally, ERPs peaked significantly later for the CI ears
- P2 dipole source in planum temporale
 - →P2 has double-peaked morphology, so appears to consist of two subcomponents (Steinmetzger & Rupp, 2024, Imaging Neuroscience, in press)

CHARITÉ


- Surprisingly, neither fNIRS nor EEG results revealed differences between conditions for the normal ears
- However, variable condition led to greater activity for implanted ears – although acoustic difference is much less obvious

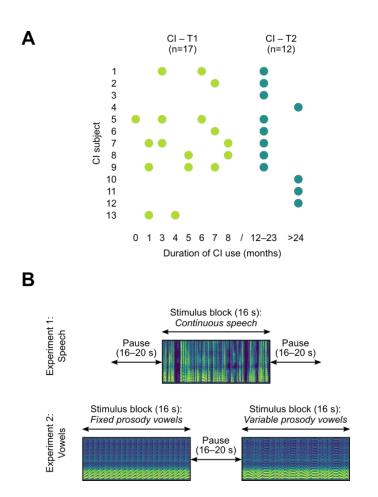
→ Suggests that saturation of activity levels in the functionally dominant normal ear


Tinnitus Center

Steinmetzger, 2022, NeuroImage: Clinical https://doi.org/10.1016/j.nicl.2022.103188

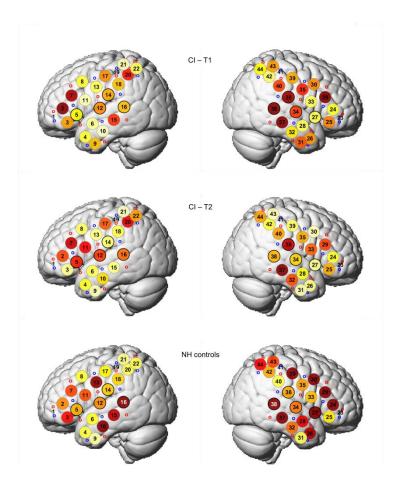
• The corresponding EEG data showed that the N1 amplitude in this region was also larger in case of higher speech intelligibility scores

→Demonstrates the that this paradigm may potentially be used for diagnostic purposes



CHARITÉ

Results: III CI children



- Groups with *less* (T1) and *more than 1 year* of CI experience (T2), and age-matched control group (NH)
- Mean age ~9 years in all 3 groups
- Children vary widely regarding age, Cl configuration, and language background
- Two experiments (speech and vowels), with most children in CI – T1 group tested repeatedly

Subject	Age ¹ (years.months)	Sex	CI ear/s	Deafness duration	Aetiology of deafness	Implant & processor type / strategy	Words correct ²	Age NH control
1	22.6	f	both	21.6	Connexin 26, 30delG-mutation	CI622 & KANSO / ACE, bilaterally	3, 6, 12 months: 60%, 60%, 80%	23.3
2	2.5	f	I	1.5	Aplasia of nervus cochlearis	FLEX28 & SONNET2 / FS4	-	2.6
3	18.2	f	r	16.3	Recurrent otitis media	FLEX28 & SONNET / FS4-p	12 months: 65%	18.4
4 ³	4.8	f	r	2.6	Large aqueduct syndrome	CI522 & CP1000 / ACE	24 months: 70% (Göttinger II)	5.0
5 ⁴	7.1	f	both	4.11	Unknown, probably congenital	CI622 & CP1000 / ACE, bilaterally	8 months: 60% (Göttinger I)	6.11
6 ⁴	7.10	m	r	6.10	Unknown	FLEX28 & SONNET / FS4	12 months: 35%	7.7
74	9.3	f	I	8.3	Unknown	FLEX28 & SONNET2 / FS4	6, 12 months: 40% (Mainzer II), 90% (Göttinger II)	8.0
8	2.7	m	r	1.6	Hyperbilirubinemia	FLEX28 & SONNET2 / FS4	9 months: 60% (Mainzer I)	3.7
9	10.7	m	r	9.6	Mondini, widened vestibular aqueduct	FLEX26 & SONNET2 / FS4	3, 6, 9, 12 months: 60%, 30%, 40% (Mainzer I), 30% (Mainzer II)	10.0
10	10.6	m	both	0.10	Unknown	CI522 & CP1000 / ACE, bilaterally	-	11.1
11 ³	8.7	m	r	6.3	Unknown	CI522 & CP1000 / ACE	-	9.6
12	8.0	m	r	5.10	Icterus of the newborn	CI622 & CP1000 / ACE	12 months: 50%	7.3
13⁴	6.4	m	both	6.0	Unknown	FLEX28 & SONNET2 / FS4, bilaterally	-	6.10


¹Age at last test session. ²Words correct scores were determined with the Freiburg monosyllabic speech intelligibility test (Hahlbrock, 1953) at a presentation level of 65 dB SPL, unless noted otherwise. ³ Hearing aid in contralateral ear taken off for testing. ⁴ No German native speakers.

- For vowel sequences, both fNIRS and EEG data showed little activity in both CI groups
- Hence, also little difference between CI groups with more and less experience
- For NH control group, bilateral activity near AC and prominent P1

- For vowel sequences, both fNIRS and EEG data showed little activity in both CI groups
- Hence, also little difference between CI groups with more and less experience
- For NH control group, bilateral activity near AC and prominent P1

Vowel ERPs (Fz)

0.4

Time (s)

CI – T2

50-200 ms

CI – T1 CI – T2

0.6

NH controls

50-200 ms

0.8

NH controls

2.5

Amplitude (µV)

2

1.5

0.5

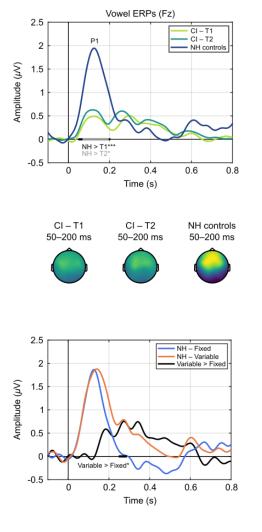
-0.5

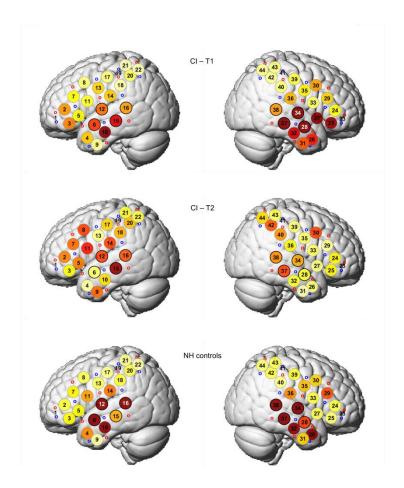
1

NH > T1***

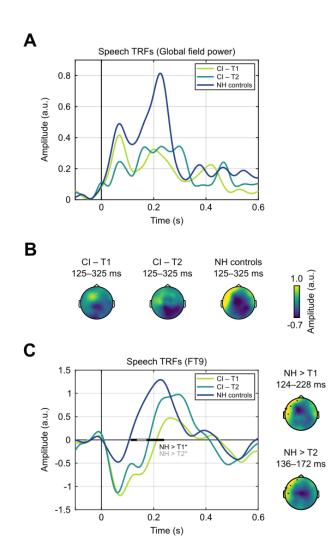
0.2

NH > T2*

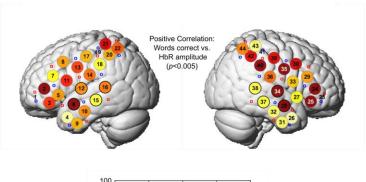

0

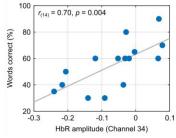

CI – T1

50-200 ms



- For vowel sequences, both fNIRS and EEG data showed little activity in both CI groups
- Hence, also little difference between CI groups with more and less experience
- For NH control group, bilateral activity near AC and prominent P1
- Similarly, larger activity in variable prosody conditions only evident for NH controls





- For speech, less experienced CI group showed an abnormal shift of activity to the right hemisphere
- For NH controls, stronger overall activity and slight lateralisation to the left hemisphere
 - → Implies that adaptation to CI-based hearing not characterised by increase of activity in left-hemispheric language network, but a reduction of abnormal contralateral activity

- EEG data in response to running speech analysed by modelling envelope-based temporal response functions (TRFs)
- TRFs exhibited prominent positive component (~200 ms) with higher amplitude and shorter latency for NH controls
- Compared to the CI groups, this positive deflection was larger in the NH controls in the left fronto-temporal scalp region
- No significant differences between CI groups, despite trend

- Same as for adult CI users, the fNIRS data reflected the speech intelligibility scores of the paediatric CI users
- In response to running speech, smaller activity in right-hemispheric network coincided with better performance
- Spatial distribution reminiscent of ventral attention network (VAN), whose deactivation is associated with focussed attention

Summary

Summary

• SSD CI adults:

→Auditory activity in response to vowels was substantially *smaller and delayed* when listening via the implanted ears, particularly for the P2

→When listening via the normal ears, large cortical responses in combination with the *absence of a condition difference* suggest an over-activation of auditory cortex Cl children:

→ Despite trends in this direction, cortical activity did not increase significantly with more CI experience and did not approach the higher levels observed in the NH controls

→ However, in the speech experiment, the less experienced CI group showed an abnormal shift of activity to the right hemisphere not observed in the other two groups

CHARITÉ Tinnitus Center

People involved & funding

Funded by the **Dietmar Hopp Stiftung** and MED-EL (2017–2023)

André Rupp & Martin Andermann

Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital

• Mark Praetorius

Section of Otology and Neuro-otology, ENT Department, Heidelberg University Hospital

Department of Otolaryngology, Head and Neck Surgery, University Hospital Eppendorf, University of Hamburg

• MD students from Heidelberg University Hospital:

Esther Megbel, Zhengzheng Shen, Bastian Meinhardt, Björn Kropf & Madhuri Sharma Rao

